Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(23): 38179-38190, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38017930

RESUMO

The current temperature-compensated fiber-optic surface plasmon resonance (SPR) biosensors are mainly open-ended outside the sensing structure, and there is a lack of temperature compensation schemes in fiber-optic microfluidic chips. In this paper, we proposed a temperature-compensated optical fiber SPR microfluidic sensor based on micro-nano 3D printing. Through the optical fiber micro-machining technology, the two sensing areas were designed on both sides of the same sensing fiber. The wavelength division multiplexing technology was used to collect the sensing light signals of the two sensing areas at the same time. The specific measurement of berberine and the detection of ambient temperature in the optical fiber SPR biological microfluidic channel were realized, and the temperature compensation matrix relationship was constructed, and then the temperature compensation was realized when measuring berberine biomolecules. Experiments have shown that the temperature sensitivity of the optical fiber SPR microfluidic sensor was 2.18 nm/°C, the sensitivity of the detection of berberine was 0.2646 nm/(µg/ml), the detection limit (LOD) was 0.38 µg/ml, and in a mixed solution showed an excellent specific detection impact.

2.
Opt Lett ; 48(19): 5057-5060, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37773384

RESUMO

At present, fiber strain sensors are mainly of the grating type and interference type, while there is relatively little research on fiber surface plasmon resonance (SPR) strain sensors. In this Letter, we propose a highly sensitive fiber SPR strain sensor based on an n-type structure. The strain changes the shape of the fiber n-type structure, causing the transmission mode of light in the fiber to change, thereby changing the SPR incidence angle and causing the SPR resonance valley wavelength to shift, achieving highly sensitive SPR strain sensing. The test results indicate that the strain sensing sensitivity of the proposed sensor reaches 21.33 pm/µÎµ, and two n-type structures are connected in series to obtain a double n-type structure, further enhancing the strain sensing sensitivity to 33.44 pm/µÎµ. This fiber strain sensor has advantages of high sensitivity, low temperature cross talk, strong structural stability, and low production cost, and is expected to become a new solution for wearable intelligent monitoring equipment and strain sensors in the aerospace field.

3.
Opt Lett ; 48(12): 3135-3138, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37319045

RESUMO

At present, fiber curvature sensors based on surface plasmon resonance (SPR) are mostly of the multimode fiber core type or cladding type. These types have many SPR modes, resulting that the sensitivity cannot be adjusted and is difficult to improve. In this Letter, a highly sensitive SPR curvature sensor based on graded-index fiber is proposed. The light-injecting fiber is eccentrically connected with the graded-index fiber to inject single-mode light. Due to the self-focusing effect, the light beam propagates in the graded-index multimode fiber with a cosine trajectory, and the cosine beam contacts the flat grooved sensing region fabricated on the graded-index fiber to generate SPR. Due to the single transmission mode of the proposed fiber SPR sensor, the curvature sensing sensitivity is greatly improved. By changing the light injection position of the graded-index multimode fiber, the sensitivity can be adjusted. The proposed curvature sensing probe has a high sensitivity and can identify the bending direction. When bending in the X direction, the sensitivity reaches 5.62 nm/m-1, and when bending in the - X direction, the sensitivity reaches 4.75 nm/m-1, which provides a new scheme for highly sensitive and directionally identifiable curvature measurement.


Assuntos
Tecnologia de Fibra Óptica , Ressonância de Plasmônio de Superfície , Ressonância de Plasmônio de Superfície/métodos , Desenho de Equipamento , Fibras Ópticas
4.
Opt Express ; 31(13): 21212-21224, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37381226

RESUMO

The Fiber SPR chip laboratory has become a popular choice in biochemical detection. To meet the needs of different kinds of analytes for the detection range and number of channels of the chip, we proposed a multi-mode SPR chip laboratory based on microstructure fiber in this paper. The chip laboratory was integrated with microfluidic devices made from PDMS and detection units made of bias three-core fiber and dumbbell fiber. By injecting light into different cores of a bias three-core fiber, different detection areas of dumbbell fiber can be selected, enabling the chip laboratory to enter high refractive index detection, multi-channel detection and other working modes. In the high refractive index detection mode, the chip can detect liquid samples with a refractive index range of 1.571-1.595. In multi-channel detection mode, the chip can achieve dual parameter detection of glucose and GHK-Cu, with sensitivities of 4.16 nm/(mg/mL) and 9.729 nm/(mg/mL), respectively. Additionally, the chip can switch to temperature compensation mode. The proposed multi working mode SPR chip laboratory, based on micro structured fiber, offers a new approach for the development of portable testing equipment that can detect multiple analytes and meet multiple requirements.

5.
Talanta ; 258: 124467, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36989617

RESUMO

The concentration of tumor markers is low, which needs a highly sensitive, stable and fast detection method. In this paper, we proposed and demonstrated a U-shape fiber SPR biosensor sensitized by MOFs materials. The surface of the U-shape SPR sensor was modified with MOFs materials to enhance the sensitivity, and the nucleic acid aptamer was immobilized on the sensor surface because of the biocompatibility of MOFs materials. By the high specificity of the nucleic acid aptamer, the MUC1 protein was recognized and detected. The testing results indicate that the sensor has a logarithmic linear response in the MUC1 protein concentration detection range of 1 pg/ml-100 µg/ml, its sensitivity and detection limit are 5.33 nm/log(µg/ml) and 0.16 pg/ml respectively. After being sensitized by MOFs, the detection sensitivity of the sensor can be increased by 1.62 times,the LOD can be decreased by 0.75 times. The sensor has high sensitivity and specificity, which has broad application prospects in clinical detection of tumor markers.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , Ressonância de Plasmônio de Superfície , Técnicas Biossensoriais/métodos , Biomarcadores Tumorais
6.
Opt Express ; 31(4): 6411-6425, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36823898

RESUMO

Three fiber micro displacement sensors can be combined to realize three-dimensional (3D) displacement sensing, but the system is complex. In this paper, a 3D displacement sensor based on fiber SPR was proposed, which was composed of displacement fiber and sensing fiber. By cascading the eccentric dual-core fiber and graded multimode fiber, the displacement fiber was realized. The V-groove was processed in the vertical and horizontal directions of the graded multimode fiber, and the inclined SPR sensing areas were fabricated to realize the sensing fiber. A straight beam from the middle core of the displacement fiber contacted the vertical V-groove inclined plane of the sensing fiber to realize the Y axis (up and down) direction micro displacement, contacted the horizontal V-groove inclined plane of the sensing fiber to realize the Z axis (front and back) direction micro displacement sensing. An oblique beam from the eccentric core of the displacement fiber cooperated with the sensing fiber to realize the micro displacement sensing in the X-axis (left and right) direction. The testing results indicate that the fiber SPR 3D micro displacement sensor can sense micro displacement in the X axis, Y axis and Z axis, and the wavelength sensitivity is 0.148 nm/µm, -3.724 nm/µm and 3.543 nm/µm, respectively. The light intensity sensitivity is -0.0014a.u./µm, -0.0458a.u./µm and -0.0494a.u./µm, respectively. When adjusting the parameters of eccentric dual-core fiber, the larger the core distance is, the greater the displacement sensitivity in the X-axis direction of the sensor is, and the smaller the detection range is. The proposed sensor can realize 3D micro displacement sensing by itself, which is expected to be used in the field of 3D micro displacement measurement and 3D space precision positioning.

7.
Micromachines (Basel) ; 13(11)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36363935

RESUMO

There are few methods and insufficient accuracy for growth differentiation factor 11 (GDF11) concentration detection. In this paper, we designed a twisted fiber cladding surface plasmon resonance (SPR) sensor, which can achieve a high precision detection of GDF11 concentration. The new structure of the fiber cladding SPR sensor was realized by coupling the light in the fiber core to the cladding through fiber thermal fusion twisting micromachining technology; a series of functionalized modifications were made to the sensor surface to obtain a fiber sensor capable of GDF11 specific recognition. The experimental results showed when GDF11 antigen concentration was 1 pg/mL-10 ng/mL, the sensor had a detection sensitivity of 2.518 nm/lgC, a detection limit of 0.34 pg/mL, and a good log-linear relationship. The sensor is expected to play a role in the rapid and accurate concentration detection of pathological study for growth differentiation factors.

8.
Opt Express ; 30(14): 24909-24923, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-36237034

RESUMO

Fiber SPR micro displacement sensor cannot be used for two-dimensional displacement sensing at present. In this paper, we proposed and demonstrated a fiber SPR two-dimensional micro displacement sensor based on the coaxial double waveguide with a conical structure. The coaxial double waveguide is fused into a cone as the light injection fiber, and two different forms of outgoing light fields can be obtained through two cores of the fiber. The horn shaped light field emitted by the ring core of the coaxial double waveguide can cooperate with the sensing fiber to realize the micro displacement sensing in the x-axis direction. And the straight beam emitted by the middle core of the coaxial double waveguide can cooperate with the sensing fiber to realize the micro displacement sensing in the y-axis direction. Through simulation analysis and experimental test, its average wavelength sensitivity and light intensity sensitivity of the x-axis displacement are 0.0537nm/µm and 0.000124a.u./µm, respectively. And that of the y-axis displacement are 0.315nm/µm and 0.00277a.u./µm, respectively. The proposed fiber sensor realizes the two-dimensional displacement sensing based on SPR, which can be widely used in the fields of two-dimensional micro displacement measurement and two-dimensional position precision positioning.

9.
Appl Opt ; 61(27): 7912-7916, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36255911

RESUMO

The fiber surface plasmon resonance (SPR) sensor is widely used in high-sensitivity refractive index detection, and there are few reports on SPR sensors used for strain measurement. In this paper, we propose and demonstrate an S-type fiber strain sensor based on SPR. The simulation and testing results indicate that the smaller the vertical axis offset of S-type fiber is, the larger the incidence angle of SPR is, and the closer the working band of SPR is to the shorter wavelength direction. By electrofusion, we fabricated an S-type structure on the single-mode fiber, and by the S-type structure, the high-order cladding mode was excited. A 50 nm gold film was coated on the surface of the fiber cladding behind the S-type structure. The evanescent field of the cladding mode contacted the gold film to produce SPR, and the strain can change the vertical axis offset of the S-type fiber and further change the incidence angle of SPR; hence an S-type fiber strain sensor based on SPR was realized. When the refractive index of the ambient medium is 1.345 RIU, the vertical axis offset and length of the S-shaped structure are 87 and 501 µm, respectively, the resonance wavelength of the fiber SPR strain sensor changes from 648.06 to 631.77 nm with a strain detection range of 0-1200µÎµ, and its sensitivity is -14.38pm/µÎµ. The proposed sensor provides a new solution for the strain measurement of the fiber SPR sensor, which is expected to be used in the fields of engineering, health monitoring, and early warning.


Assuntos
Refratometria , Ressonância de Plasmônio de Superfície , Ressonância de Plasmônio de Superfície/métodos , Fibras Ópticas , Ouro/química
10.
Appl Opt ; 61(15): 4620-4626, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36256305

RESUMO

A fiber surface plasmon resonance (SPR) sensor is widely used in high-sensitivity refractive index measurement, but there is less research on curvature measurement. In this paper, a single-mode fiber curvature sensor based on SPR is designed and fabricated. By employing bending, the transmitted light in the fiber core leaks into the cladding. A 50 nm gold film is coated outside the cladding, and the evanescent field of the cladding after bending contacts the gold film to cause SPR. When the curvature changes, the coupled cladding mode and intensity are different; that is, the SPR incident angle and evanescent field intensity are different, so as to realize the dual parameters of SPR resonance wavelength and depth of the resonance valley changing with curvature. By experiments, the influence of different cutoff wavelengths of single-mode fiber on the performance of the sensor is studied. The testing results indicate that with the decrease in cutoff wavelength of the single-mode fiber, the valley depth sensitivity of the sensor increases, and the half height width (FWHM) decreases. When the cutoff wavelength of the single-mode fiber is 630 nm, the valley depth sensitivity of the sensor is 0.0088a.u/m-1, the wavelength sensitivity is 0.26nm/m-1, and the average FWHM is only 21 nm. The proposed single-mode fiber curvature sensor based on SPR has a narrow FWHM and an opening threshold. It can also realize no opening threshold by introducing a coreless fiber, which provides a new solution, to the best of our knowledge, for the diversified detection of fiber SPR sensors.


Assuntos
Tecnologia de Fibra Óptica , Ressonância de Plasmônio de Superfície , Ressonância de Plasmônio de Superfície/métodos , Tecnologia de Fibra Óptica/métodos , Desenho de Equipamento , Refratometria , Ouro
11.
Lab Chip ; 22(23): 4501-4510, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36305279

RESUMO

To further reduce the size of a microfluidic detection chip and the sample consumption and to shorten the chip manufacturing cycle, an all-fiber SPR detection multichannel microfluidic chip was proposed and demonstrated in this paper. The microfluidic channel of the proposed chip was provided by the air channel of a double side-hole fiber, the detection unit was fabricated using a dumbbell fiber with a fiber core exposed to air, and the sensing probe was composed and packaged by fiber micro-processing technology. The internal double channels of the fiber constructed from double side-hole and dumbbell fibers can realize dual channel detection based on space division multiplexing. 30 nm silver and 50 nm gold films were respectively coated on the left and right sides of the dumbbell fiber, which can realize the dual channel simultaneous detection based on wavelength division multiplexing. We employed the proposed microfluidic chip to detect immunoglobulin G and dopamine molecules, where the average sensitivity is 0.252 nm (mg mL-1)-1 and 0.061 nm (µg mL-1)-1, and the LOD is 0.397 mg mL-1 and 1.639 µg mL-1, respectively. The microfluidic channel and detection unit of all-fiber multi-channel SPR detection microfluidic chip are provided by a soft and flexible fiber, which is compact in structure, flexible in fabrication and short in manufacturing cycle, making it possible for the microfluidic chip to enter the human body for detection and enabling a new approach for the fabrication of wearable detection microfluidic devices. This provides a new idea for the development of microfluidic chips.


Assuntos
Técnicas Analíticas Microfluídicas , Humanos , Microfluídica , Ouro/química , Prata
12.
Biomed Opt Express ; 13(12): 6659-6670, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36589582

RESUMO

In order to perform microfluidic detection of cytokines with low concentration, such as growth differentiation factor 11 (GDF11), the most common method is to construct microfluidic channels and integrate them with SPR sensing units. In this paper, we proposed a novel all-fiber SPR microfluidic chip for GDF11 detection. The method was to construct the SPR sensing area on a designed D-shaped multimode fiber, which was nested inside a quartz tube to form a semi-cylindrical microfluidic channel. The surface of the SPR sensing area experienced sensitization and specifically modification to achieve the specific detection of GDF11. When the sensitivity of detection was 1.38 nm/lg(g/mL) and the limit of detection was 0.52 pg/mL, the sample consumption was only 0.4 µL for a single detection. The novel all-fiber SPR microfluidic detection chip has the advantages of flexible design, compact structure and low sample consumption, which is expected to be used in wearable biosensing devices for real-time online monitoring of trace cytokines in vivo.

13.
Opt Lett ; 47(22): 6017-6020, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37219161

RESUMO

Fiber Bragg gratings and interferometric curvature sensors are easily disturbed by axial strain and temperature, and cascaded multi-channel curvature sensing is difficult. In this letter, a curvature sensor based on fiber bending loss wavelength and the surface plasmon resonance (SPR) mechanism is proposed, which is insensitive to axial strain and temperature. In addition, fiber bending loss valley wavelength demodulation curvature improves the accuracy of bending loss intensity sensing. Experiments show that the bending loss valley of single-mode fiber with different cut-off wavelengths has different working bands which is combined with a plastic-clad multi-mode fiber SPR curvature sensor to realize a wavelength division multiplexing multi-channel curvature sensor. The bending loss valley wavelength sensitivity of single-mode fiber is 0.8474 nm/m-1, and the intensity sensitivity is 0.0036 a.u./m-1. The resonance valley wavelength sensitivity of the multi-mode fiber SPR curvature sensor is 0.3348 nm/m-1, and the intensity sensitivity is 0.0026 a.u./m-1. The proposed sensor is insensitive to temperature and strain, and the working band is controllable, which provides a new, to the best of our knowledge, solution for wavelength division multiplexing multi-channel fiber curvature sensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...